
Advanced MIDI Guitar Effects System

Ronan O’Malley
Final Year Project, Supervised by Dr Martin Glavin.

Dept. of Electronic Engineering, National University of Ireland, Galway

Abstract-This paper describes a unique digital effects system

for guitarists, which is suitable for use in live performances. The
project will allow a guitar player to easily configure effects in
advance from a PC based graphical user interface, a feature that
sets this system aside from conventional effects systems that use
cumbersome dials, buttons and switches. This feature also
allows the professional user to fine-tune specific parameters,
inaccessible in traditional multi-effects units.

A pedal board device provides real-time adjustment and
selection of effects from a custom built effect database. Both
means of control adopt the MIDI protocol, and therefore they
may be complemented with any MIDI compatible device such as
a sequencer or programme changer.

I. INTRODUCTION

The aim of this project is to research and develop a digital
effects system with real-time MIDI (Music Instrument Digital
Interface) control and PC configuration for the electric guitar.

Section II of this paper outlines the initial research and
development conducted to confirm existing effects theory and
develop unique algorithms that port easily to hardware. A set
of variable parameters with boundaries is established for each
effect to ensure straightforward manipulation for users who
have no underlying knowledge of the algorithm, while
allowing professional users advanced algorithm
configuration.

The project proceeds with development of pedal board for
real-time control, as outlined in Section III. The 8-bit micro-
controller based control system utilises existing MIDI
protocol. The signal processing functionality is controlled in
two ways using this technology:

• Static on/off data sent from foot-switches, indicating
when an effect should be enabled or disabled in real-
time.

• Dynamic positional data sent from a variable pedal,
this can alter an effect parameter during guitar play
and provides a versatile performing environment.

A separate micro-controller is employed to perform
switching and parameter change functions to accommodate
the possibility of wireless communication between pedal-
board and central signal processor. This link is simulated in
this project with a wired asynchronous serial link to facilitate
MIDI communication.

Effects developed in Matlab are re-coded in embedded in
signal processing hardware. Section IV outlines this as well
as the operating system and MIDI decoder control layers that
are implemented on top of this audio processing data layer.

Section V concludes with a walkthrough of the MIDI
connection from a PC to the DSP which provides a
transmission path for a Java GUI to enable natural and
flexible reconfiguration of effects, and storage of set
“patches” which can be recalled at the push of a footswitch.

Fig. 1. System overview

II. Effect Simulation

 A number of popular effects were simulated to prove the
theory behind them, and establish a reliable and reproducible
algorithm. A set number of variable parameters with clear
boundaries were established for each effect, to aid in the
process of embedding them.

A. Fuzz Distortion

This effect is also known as symmetrical clipping or the
Hendrix Effect. It is a harsh distortion effect, any sample
above or below a threshold is limited to that amplitude. The
signal is then amplified to compensate for the loss of average
signal magnitude.

Fig. 2. Audio signal before application of fuzz algorithm

8051

1 2 3 4 5 6 7 8

ADC DAC

ADSP-21364

DSP

8051
ADuC831

Foot Switch Array

Variable Foot Pedals

Effects

PC Configuration Data

Pedal-board Control Data

Audio Signal Audio Signal

ADC

UART

UART

UART

Fig. 3. Audio signal after application of fuzz algorithm

This alteration creates signal discontinuities, producing high
frequency components that give the sound its distinct edge.

B. Tremolo

A tremolo effect is produced by applying a low frequency
oscillating mask to the incoming signal. Triangle-wave
oscillator and sine-wave oscillator variants were coded,
however the triangle variant produced superior results.
The following parameters and boundaries were established
through experimentation with Matlab:

• Frequency of oscillator – 2.4Hz to 24Hz.
• Wave shape of oscillator – Triangle is superior.
• Output may need to be amplified to compensate for

overall loss of signal magnitude.

x(n) y(n)

sin(ωT)

x(n)sin(ωT)

 Fig. 4. Block diagram of tremolo effect

Fig. 5. Audio signal after application of triangular mask

C. Delay

This effect is created by adding delayed, diminished samples
to the incoming signal. The following parameters were
established to vary the effect:

• Delay period.
• Amplitude of first delay.
• Diminishing rate - this determines the amplitude of the

next delay as a function of the current sample.
• No of delays – this is an optional constraint. Generally

this would be determined by the diminishing rate
reducing the delay amplitude to zero. However this
parameter becomes important when embedding this
effect.

Varying these parameters can produce a number of different
effects. For example, one set of parameter boundaries can
produce a traditional delay effect; another will produce an
echo effect.

����

kT

2kT

3kT

x(n) y(n)

ckT

1A

2A

3A

cA

Fig. 6. Delay effect

y(n) = x(n) + A1x(n-k) + A2x(n-2k) + A3x(n-3k) +….+ Acx(n-ck)

k is the number of samples between delays. This is a function
of the delay period T and the sampling frequency fs.

k = T fs (1)

Delay range
(ms) Modulation Effect Name

0 – 20 - Resonator
0 – 15 Sinusoidal Flanging

10 – 25 Random Chorus
25 - 50 - Slapback

>50 - Echo
Fig. 7. Typical delay based effects [1]

D. Wah-Wah

A “wah-wah” effect was reproduced in Matlab by
constructing a peak filter, and oscillating the filter’s centre
frequency through a set range. A peak filter is a band-pass
filter with a narrow pass band and through experimentation,
aided by some knowledge of the frequency content of a guitar
sound, a parameter range of 500 Hz – 5 kHz was established
for the filter’s centre frequency. A state variable digital filter
(Figure 8.) was employed to produce the band pass filter, and
for simulation purposes the filter’s centre frequency was
oscillated between it’s maximum and minimum bounds using
a triangle wave as a reference. When implemented in
hardware, user pedal input will dictate the filter’s centre
frequency.

�������� ���� ����

z-1

z-1

z-1

z-1

Input

Highpass Output Bandpass Output Lowpass output

Q1

F1 F1

+
-

+
-

Fig. 8. State variable filter [1]

)1()()(1 −+= nynyFny hphpbp (2)

)1()()(11 −+= nyQnyFny bplphp
 (3)

��
�

�
��
�

�
=

s

c

f
f

F
π

sin21
 (4)

ς21 =Q (5)

The variables associated with this effect are:

• Damping Coefficient (�) of the filter.
• Centre Frequency of the filter.

This is dynamically controlled by a variable foot pedal,
creating the “wah” sound that gives the effect its name.

E. Flanger

3.1.5 Flanger
A flanger effect is constructed of a single delay, oscillated
within a short range at a low frequency. Effect variables [1],

• Delay range (0 to 3ms)
• Oscillator (Sin wave, triangle wave)
• Oscillating frequency (1 Hz)
• Amplitude of the delay (70% of the input sample)

�
x(n) y(n)

Depth

LFO

Time-varying delay

Fig. 9. Flanger effect

III. PEDAL-BOARD

The 8-bit assembly code system was embedded in an 8051
based microcontroller, within an Analog Devices ADuC831
development board. The pedal-board incorporates this
microcontroller as it is designed to be a stand-alone entity,
which could ultimately also control a wireless transmitter.

An operating system was coded to obtain data from the
pedal board input equipment, convert the data into MIDI
message format and transmit over an asynchronous
connection to the DSP unit.

The real-time operating system firstly polls two variable
foot pedals and compares the current value with the last
transmitted value in memory. If the pedal’s value has
changed since the previous transmission, then the new value
is converted into MIDI format, and three MIDI messages are
sent. These messages indicate that:

• there is a control change
• the channel number
• the controller number of the pedal
• the pedals new value

The ADuC831’s on board ADCs produce a twelve bit result
upon reading the voltage from the on board potentiometer.
To conform to MIDI protocol the seven most significant bits
of the ADC reading are used to determine the pedals position,
which provides a sufficiently accurate resolution.

A similar functionality is employed for the switches that
control effect on/off state. Memory holds the most recent
switch value transmissions. If the value of a switch has
changed, three MIDI messages are transmitted corresponding
to the switch’s new value. The DSP board receives these
messages, decodes them and applies the corresponding
changes to the embedded effects.

IV. DSP SYSTEM

Guitar effects outlined in Section II were embedded in
signal processing hardware. The processor performs audio
signal processing concurrently with asynchronous serial
reception, MIDI message decoding in addition to control and
parameter change.

The first objective in developing the audio processing
system was to build a system that sampled audio through the
on board ADC and passed it directly out to the DAC.

Reception of an ADC sample triggers a serial port
interrupt. Another serial port is configured to transmit to two
of the four on board digital to analogue converters. This
allows for output of the processed audio to a guitar amplifier,
and a set of headphones.

Upon execution of ADC interrupt, the talk-through system
reads the current sample, and writes it to the DACs. It is
between these two tasks that the effect processing takes place.

Concurrently to the audio processing, a software UART [2]
provides asynchronous serial reception of MIDI data using
synchronous serial ports, both from the pedal-board and PC
GUI. MIDI data is buffered and decoded, after which the
corresponding control changes are applied to the effect status
and parameters.

V. JAVA MIDI PROGRAMMER

A graphical user interface program was coded in Java.
Users make alterations to the effect setup, and these changes
are sent in MIDI format over a serial link to the DSP. Java
was chosen for ease of use, flexibility and provision of
excellent API libraries. This program utilises the javax.swing
API to provide a user-friendly interface to effect control,
ensuring the underlying MIDI protocol is transparent to the
user. The javax.sound.midi package of the Java API provides
the methods and classes for dealing with MIDI device
selection, opening ports, establishing connections and
message generation. The java code defines how the setup
configuration data is serialised into MIDI messages and
transmitted.

VI. CONCLUSIONS

This paper has outlined a system that provides a unique and
dynamic environment for guitarists, both novice and
professional. Research has confirmed traditional effects
theory and produced robust algorithms for hardware
implementation. A standalone pedal-board offers real-time
switching, and parameter change. A PC based GUI offers
intricate customisation “off the shelf”, without the need to
trawl through oceans of manuals. The adherence to MIDI
protocol throughout allows the addition of other standard
equipment such as synthesisers and programme changers.

VII. EXTENSION POSSIBILITIES

It is desirable to have a wireless link between the pedal board
and the DSP processor. This would allow a certain amount of
freedom when playing, and positioning equipment. The
wired serial link has been extensively tested, and RF link
would be a beneficial extension to the project. The greatest

challenge to establishing a wireless link would be adherence
to the MIDI baud rate. Failure to exactly match the 31.25
kbps baud rate means buffering would have to take place.

REFERENCES

[1] Udo Zölzer, DAFX Digital Audio Effects, Chichester, UK,
Wiley, 2002.

[2] EE-191, Implementing a Glueless UART Using The
SHARC® DSP SPORTs, Dan Ledger, Analog Devices,
May 6, 2003.
http://www.analog.com/UploadedFiles/Application_Notes
/399447663EE191.pdf

